

INDIAN SCHOOL AL WADI AL KABIR

Annual Examination 2022-23

SUB: Mathematics (041) Set 1

Date:02/03/2023

Time Allowed :3 hours

Maximum Marks: 80

Class: IX

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D, and E.

2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.

3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.

4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.

5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.

6. Section E has 3 Case Based integrated units of assessment (4 marks each) with

sub-parts of the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of

3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$, wherever required if not stated.

	SECTION A									
Section A consists of 20 questions of 1 mark each.										
1	The zer	The zero of the polynomial $p(x) = 3x - 2$ is:								
	(A)	0	(B)	$\frac{2}{3}$	(C)	$\frac{3}{2}$	(D)	$\frac{-2}{3}$		
2	Euclid stated that all right angles are equal to each other in the form of:									
	(A) an axiom (B) a definition					on				
	(C) a postulate (D) a proof									
3	Volume of right circular cone of radius 6cm and height 7cm is:									
	(A)	1892 cm ³	(B)	66 cm ³	(C)	264 cm^3	(D)	132 cm ³		

1 |ISWK/Question Paper/Annual Examination 2022-23/Class IX/02-03-2023

4	$\sqrt{12} \times \sqrt{8}$ is equal to:								
	(A)	$4\sqrt{6}$	(B)	$3\sqrt{6}$	(C)	$2\sqrt{6}$	(D)	$6\sqrt{6}$	
5	The angles of a quadrilateral are in the ratio 2 : 3 : 6 : 7. The largest angle of the quadrilateral							quadrilateral	
	is:								
	(A)	120°	(B)	220°	(C)	180°	(D)	140°	
6	The peri	meter of an is	osceles triar	ngle is 32 cm.	The ratio o	f equal side	to the bas	e is 3 : 2.The	
	equal si	des are of leng	th:						
	(A)	20 cm	(B)	16 cm	(C)	8 cm	(D)	12 cm	
7	The equ	ation of a line	parallel to y	y – axis is:					
	(A) $y = a$; a is any real number				(B)	x = a; a is any real number			
	(C)	(C) y = x			(D)	$\mathbf{x} + \mathbf{y} = 0$			
8	The tota	l surface area	of a hemisp	here of radius	r is:				
	(A)	$4\pi r^2$	(B)	πr^2	(C)	$2\pi r^2$	(D)	$3\pi r^2$	
9	Which o	f the following	is irrational?						
	(A)	$\frac{\sqrt{4}}{\sqrt{9}}$	(B)	$\frac{\sqrt{24}}{5\sqrt{6}}$	(C)	$\sqrt{7}$	(D)	$\sqrt{81}$	
10	In ΔAB	C, $AB = AC$ as	nd $\angle B = 50^\circ$	°. Then ∠A is	equal to:				
	(A)	80°	(B)	50°	(C)	40°	(D)	130°	
11	HELP is	s a parallelogra	am. Diagona	als HL and EP	intersect a	t O. If OE =	4 cm and	HL is 5cm	
	more the	an EP find OH	[.						
	(A)	8 cm	(B)	6.5 cm	(C)	13 cm	(D)	4.5 cm	
12	The poin	nt whose ordin	ate is -5 and	d which lies or	n y-axis is:				
	(A)	(-5, 0)	(B)	(0, -5)	(C)	(5, -5)	(D)	(-5, 5)	

13	In triangles ABC and PRQ, $AB = PR$ and $\angle A = \angle P = 90^{\circ}$. The two triangles are congruent by							
	RHS congruence if:							
	(A)	AC = PQ	(B)	AC = QR	(C)	BC = RQ	(D)	BC = PR
14	In the f	igure, the magn	itude of an	gle ABC if angl	le ∠AOC	C=130° will be	:	
	P							
				130°	A			
				$\left(\setminus \right)$	()			
				$\backslash \backslash /$				
				P				
	(A)	160°	(B)	65°	(C)	50°	(D)	115°
15	The are	a of an equilate	ral triangle	e with side 60 cr	n is:			
	(A)	$90\sqrt{3}$ cm ²	(B)	900cm ²	(C)	$900\sqrt{3}$ cm ²	(D)	$300\sqrt{3}$ cm ²
16	The val	ue of $249^2 - 248$	³² is equal	to:				
	(A)	12	(B)	477	(C)	487	(D)	497
17	The val	ue of $(125)^{\frac{2}{3}}$	is [.]					
	(A)	5	(B)	25	(C)	35	(D)	45
18	AD is a	diameter of a c	ircle and A	AB is a chord. If	AD = 3	4 cm, AB = 30) cm, the	e
	distance	e of AB from th	e centre of	f the circle is:				
	(A)	8 cm	(B)	15 cm	(C)	4 cm	(D)	17 cm
	DIREC	TION: In the c	luestion nu	umbers 19 and 2	0, a state	ement of asser	tion (A)) is followed by
	statement of Reason (R). Choose the correct option.							

19	Assertion(A): If $(x + 1)$ is a factor of $f(x) = x^2 + ax + 2$, then $a = -3$.								
	Reason(R) : If $(x - a)$ is a factor of $p(x)$, then $p(a) = 0$.								
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)								
	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)								
	(c) Assertion (A) is true but reason (R) is false.								
	(d) Assertion (A) is false but reason (R) is true.								
20	Assertion (A): If two complementary angles are in the ratio 3:6, the angles are 30° and 60°.								
	Reason (R): Two angles are said to be complementary if the sum of the angles is 90°.								
	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)								
	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)								
	(c) Assertion (A) is true but reason (R) is false.								
	(d) Assertion (A) is false but reason (R) is true.								
	SECTION B								
	Section B consists of 5 questions of 2 marks each.								
21	Express $0.\overline{23}$ in $\frac{p}{q}$ form where p and q are integers and $q \neq 0$.								
22	In the given figure $AB = CD$, $\angle DCA = \angle BAC$. Prove that $AD = CB$.								

23	Express $8x + 2 = -5y$ in the form $ax + by + c = 0$ where a, b and c are real numbers and find the					
	values of a, b and c.					
	OR					
	Find the value of 'm' so that $x = 1$ and $y = 1$ is a solution of the equation $5mx + 30my = 70$.					
24	In the adjacent figure, AB is a straight line. Find the value of x and also find $\angle AOC$.					
	A (3x+7)° (3x+7)° B					
25	Find the cost of white-washing the outer curved surface of a hemispherical dome with radius					
	14 m at the rate of \gtrless 50 per m ² .					
	OR					
	Find the diameter of a sphere whose surface area is 616 cm^2 .					
	SECTION C					
	Section C consists of 6 questions of 3 marks each.					
26	Factorise: $x^3 - 3x^2 - 10x + 24$					
27	In the given figure, AB CD, $\angle AQP=140^{\circ}$ and $\angle PRD=35^{\circ}$. Find $\angle QPR$ and reflex $\angle QPR$.					
28	Represent $\sqrt{8.2}$ geometrically on the number line.					
	OR					
	Simplify:					
	$\frac{1}{3+\sqrt{7}} + \frac{1}{\sqrt{7}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{3}} + \frac{1}{\sqrt{3}+1}$					

5 |ISWK/Question Paper/Annual Examination 2022-23/Class IX/**02-03-2023**

29	Write any 3 Euclid's Axioms.							
30	Prove that equal chords of a circle subtend equal angles at the centre.							
30	Prove that equal chords of a circle subtend equal angles at the centre. OR In figure, O is the centre of the circle and POQ is the diameter of the circle. If $\angle PSR = 140^\circ$, find $\angle RPQ$. $\int \frac{S}{100^\circ} \frac{R}{100^\circ} Q$							
31	A survey of 200 people was conducted about their preference of visiting various pavilions.							
	Pavilion	C	bood living	Delhi F	avilion	Toy Pavilio	on D	efence
	No. of people 95 45		5	40		20		
	Find the probability that the selected person visited: (i) Only Defence pavilion (ii) Only Toy pavilion (iii) Both Good living and Delhi pavilion							
				SECT	ION D			
		Sec	tion D cons	sists of 4 qu	lestions of	5 marks e	ach.	
32	Draw a histo	ogram and f	requency po	lygon on the	e same grap	h for the foll	owing data.	
	Classes	150-200	200-250	250-300	300-350	350-400	400-450	450-500
	Frequency	5	3	5	6	8	7	1

33	The triangular side walls of a flyover have been used for advertisements. Sides of a triangular									
	side walls are in the ratio of 12 : 17 : 25 and its perimeter is 540 m. Find the area of one									
	triangular side wall. The advertisement yields an earning of \gtrless 5000 per m ² per year.									
	A company hired one of its side walls for 1 year. How much rent did the company pay for an									
	year for the side wall?									
	OR									
	A triangular park ABC has sides 120m, 80m and 50m. A gardener Dhania has to put a fence all									
	around it and also plant grass inside. How much area does she need to plant? Find the cost of									
	fencing it with barbed wire at the rate of ₹ 20 per metre leaving a space 3m wide for a gate on									
	one side.									
34	Draw the graph of the linear equation $x + 2y = 8$ and answer the following questions.									
	(i)Find the coordinates of the point which intersect the graph at X axis.									
	(ii) Is $x = -2$, $y = 5$ a solution of $x + 2y = 8$.									
35	ABCD is a quadrilateral in which P, Q, R and S are mid points of sides AB, BC, CD and DA									
	(see fig). AC is a diagonal. Prove that									
	(i) $PQ \parallel SR$ $D \land C$									
	(ii) PQRS is a parallelogram.									
	(iii) $PS = QR$									
	A p B									
	ABCD is a trapezium in which AB $\ CD. CE\ $ AD and AD = BC (see Fig.). Show that									
	$(i) \angle A = \angle B$									
	(ii) $\angle C = \angle D$									
	(iii) $\triangle ABC \cong \triangle BAD$									

Case Study – 2

John planned a birthday party for his younger brother with his friends. They decided to make some birthday caps by themselves and to buy a cake from a bakery shop. For these two items, they decided the following dimensions:

Cake: Spherical cake with diameter 28 cm.

Cap: Conical shape with base circumference 44 cm and height 24 cm.

Ι	What is the radius of the conical cap?	1m		
II	What is the slant height of the conical cap?	1m		
III	How many square cm paper would be used to make 4 such caps?			
	OR			
	What is the volume of the spherical birthday cake?			

37

Case Study -3

38

Aditya, a student of Class IX went to a city Hospital along with his grandfather for general checkup. From there he visited three places - School, Library and Police Station. After returning to his village, he plotted a graph by taking Hospital as origin and marked three places on the graph as per his direction of movement and distance.

Based on the above information answer the following questions:

Ι	Find the coordinates of school and library.	1m				
II	Find the distance between school and police station.					
Ш	Identify the quadrant or axis on which the following points lie.(i)(0, 2)(ii)(-2, -1)(iii)(4, 3)	2m				
	(iv) (5, -1) OR Find the coordinates of the hospital and police station. Also, find the difference of abscissa of library and ordinate of the police station.					
